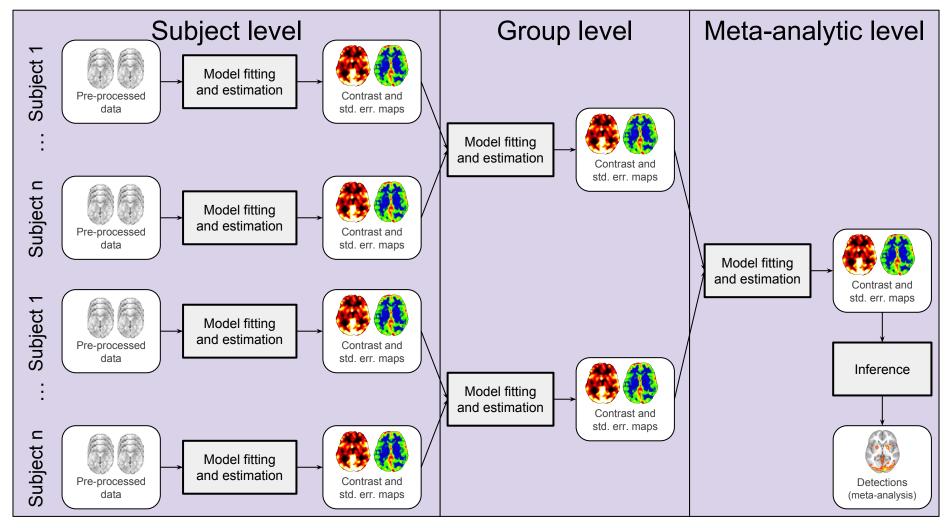
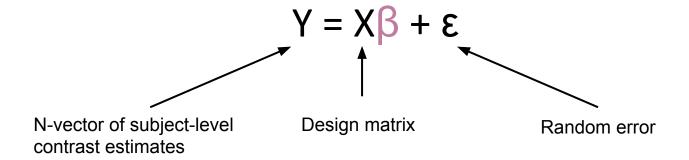
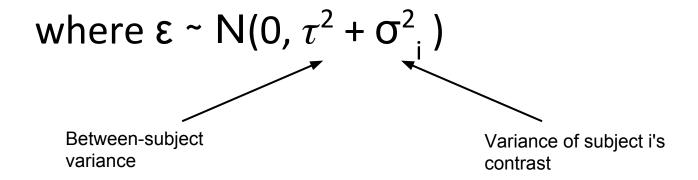


Validity of summary statistics-based mixed-effects group fMRI


Camille Maumet and Thomas Nichols

- 1. University of Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France.
 - 2. Oxford Big Data Institute, University of Oxford, Oxford, UK.




What is the link between meta-analysis and group fMRI?

Methods

GLM for group fMRI

Solving the GLM: OLS vs. FGLS

Y = Xβ + ε, where ε ~ N(0,
$$\tau^2$$
 + σ_i^2)

Assuming $\tau^2 + \sigma^2$, constant, **Ordinary Least Squares (OLS)** gives the following group statistic estimate:

$$T = \left(\sum_{i=1}^{N} \frac{Y_i}{\sqrt{N}}\right) / \widehat{\sigma_C^2}$$

where $\widehat{\sigma_C^2}$ is the usual one-sample variance.

Under
$$H_0$$
: $T \sim \mathcal{T}_{N-1}$

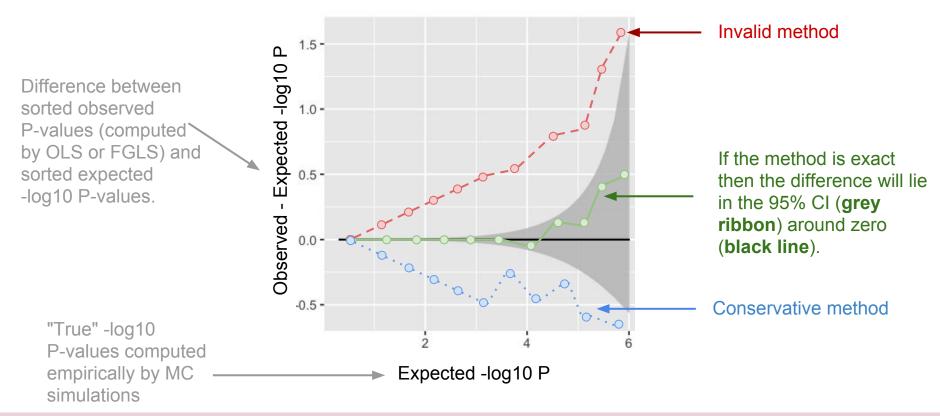
Solving the GLM: OLS vs. FGLS

Y = Xβ + ε, where ε ~ N(0,
$$\tau^2$$
 + σ_i^2)

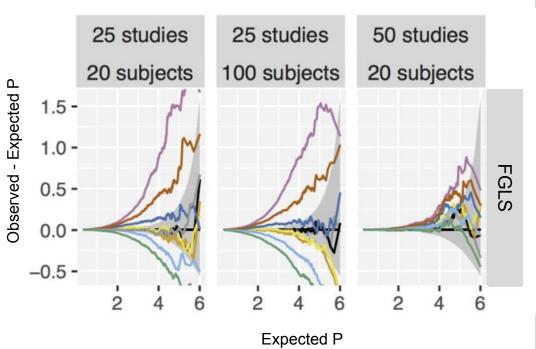
Feasible Generalised Least Squares (FGLS) gives the following group statistic estimate:

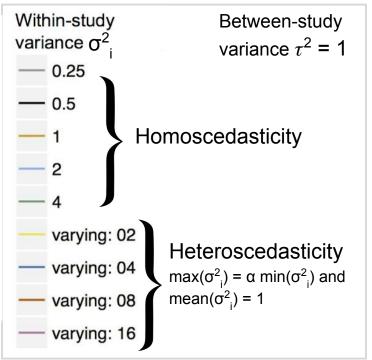
$$T = \left(\sum \kappa_i Y_i\right) \bigg/ \sqrt{\sum_{i=1}^N \kappa_i} \quad ext{where } \kappa_i = 1/(\hat{ au}^2 + s_i^2)$$

where s_i^2 is the study i's sampling variance.


In large samples, under H_0 : $T \sim \mathcal{T}_{N-1}$

Solving the GLM: OLS vs. FGLS


	Statistic	Assumptions	Implementation
OLS	$T = \left(\sum_{i=1}^{N} \frac{Y_i}{\sqrt{N}}\right) / \widehat{\sigma_C^2}$	$\tau^2 + \sigma_{i}^2$ constant	'One-sample t-test' (default)
			'Mixed effects: Simple OLS'
			3dttest++
FGLS	$T = \left(\sum_{i=1}^{N} \kappa_i Y_i\right) / \sqrt{\sum_{i=1}^{N} \kappa_i}$	Large samples	'Mixed-effects analysis'
			'Mixed effects: FLAME1' (default)
			3dMEMA


Goal: assess the validity of OLS and FGLS under violation of their assumption

Method: Monte Carlo simulations

And in meta-analyses?

Question: Does this issue also affects group fMRI studies?

Simulations

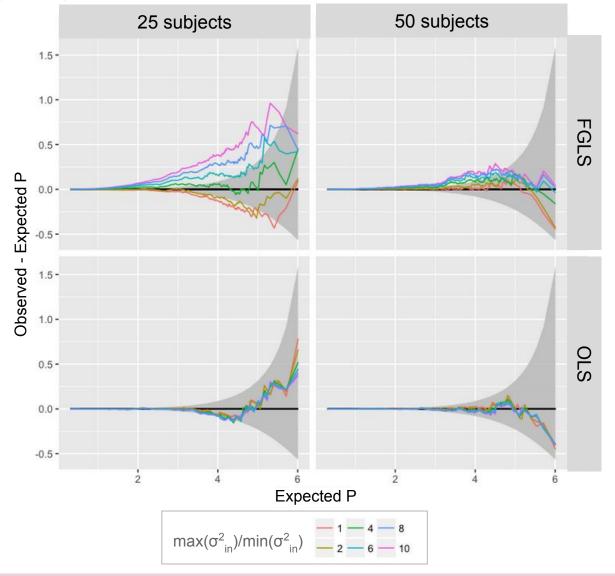
Between- and within-subject variances in real fMRI data

21 studies investigating pain

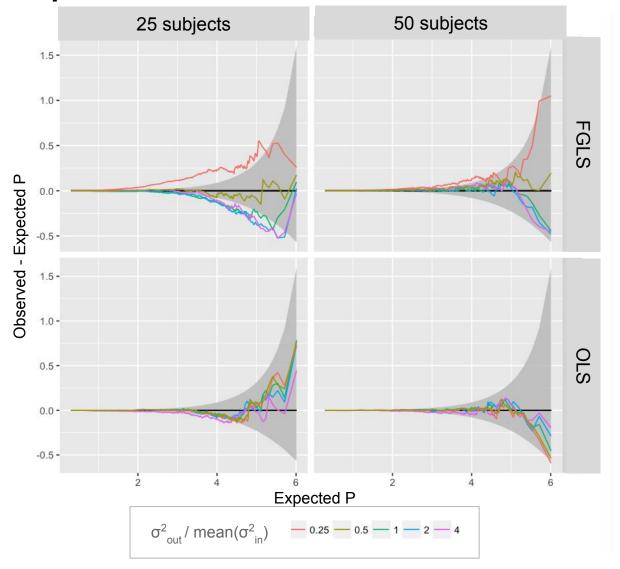
Study	# subjects	# outliers	Mean $ au^2$	Mean σ ² _{in}	Max/Min σ ² _{in} ratio	Mean σ ² _{out}
01	25	2	354	100	4	282
02	25	1	680	100	5	317
03	20	2	800	100	5	281
04	20	3	886		9	347
05	9	0	1802		3	-
Summary		0-15%	18-170	100	2-9	164-300

Simulation setup

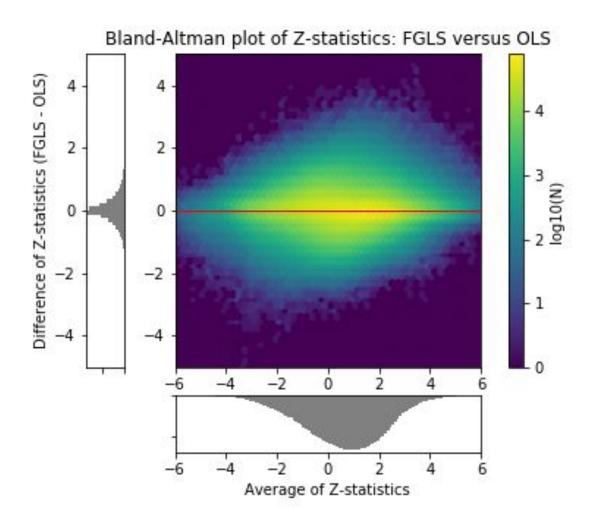
 $N \in \{25, 50\}$ subjects $\tau^2 = 1$ and mean(σ^2_{in}) = 1


Two settings for the within-subject variance:

- $\max(\sigma_{in}^2) / \min(\sigma_{in}^2) \in \{1, 2, 4, 6, 8, 10\}$
- 16% of outliers with $\sigma^2_{\text{out}} \in \{0.25, 0.5, 2, 4\}$


10⁶ realisations

Results


Varying levels of heteroscedasticity

In the presence of outliers

Real data

Conclusions

FGLS can be invalid is small samples, especially in the presence of strong heteroscedasticity or 'low variance' outliers.

RFX remained valid in all studied settings.

Acknowledgments: This work was supported by the Wellcome Trust. We gratefully acknowledge the use of the pain dataset from the Tracey pain group, FMRIB, Oxford. Part of the work was conducted while TEN and CM were at the University of Warwick and used the High Performance Computing cluster of the Department of Statistics, University of Warwick.

