Random-effects and Mixed-effects GLM

Camille Maumet 1,2

¹Neuroimaging Statistics, University of Warwick, UK.
²Formerly affiliated to University of Rennes 1 & Inria, VisAGeS, France.

NeuroImaging seminars, Institute of Psychiatry King's College London - February 14th, 2014

Camille Maumet

Detecting perfusion abnormalities

ASL Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment Results

Conclusions

Outline

Detecting perfusion abnormalities

Random-Effects and Mixed-Effects General Linear Model

Detections in ASL

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling Group analysis Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model
Hypothesis testing
Random-effects and Mixed-effects

Detections in ASL

Methods Experiment Results

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results
Conclusions

Outline

Detecting perfusion abnormalities Arterial Spin Labelling

Group analysis
Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

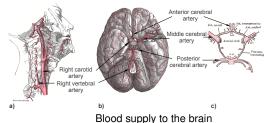
Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL


Methods

Experiment

Results

Conclusions

Brain perfusion

Camille Maumet

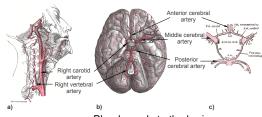
Detecting perfusion abnormalities

ASL

Group

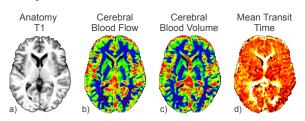
Single-subject

General Linear Model: MFX and RFX


Hypothesis testing BEX and MEX

Detections in ASL

Methods Experiment Results


Conclusions

Brain perfusion

Blood supply to the brain

Brain perfusion is the biological process that ensures the delivery of oxygen and nutrients to the cerebral tissues by means of microcirculation.

Example of perfusion parameters

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Arterial Spin Labelling (ASL)

Labelling

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Labelling

Delay

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Delay

Readout

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Labe

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis

testing **RFX** and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Readout

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Arterial Spin Labelling (ASL)

Label

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing **RFX** and MFX

Detections in ASL

Methods Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Labelling

Delay

Readout

Control

1 pair

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing **RFX** and MFX

Detections in ASL

Methods Experiment Results

Conclusions

Arterial Spin Labelling (ASL)

Delay

Readout

Control

Label

Difference 1 pair

60 pairs

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Within-group analysis

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

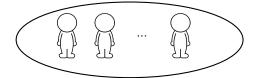
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Within-group analysis

Identify common patterns across a group of subjects.

Camille Maumet

Detecting perfusion abnormalities

ASL

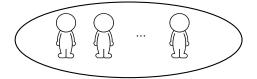
Group

Single-subject

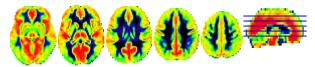
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment


Results
Conclusions

Within-group analysis

Identify common patterns across a group of subjects.

Examples

Group cerebral blood flow.

Group activation for a language task.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Between-group analysis

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Between-group analysis

Identify differences at the group level.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods Experiment Results

Conclusions

Between-group analysis

Identify differences at the group level.

Example

Differences of perfusion between a group of patients and a control group.

- Hyper-perfusion.
- Hypo-perfusion.

Camille Maumet

Detecting perfusion abnormalities

ASL Group

Single-subject

Olligie Subjec

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Within-subject analysis

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Within-subject analysis

Identify patterns of perfusion (or activation) in a single subject.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

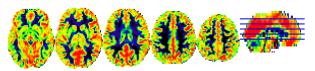
General Linear Model: MFX and RFX

Hypothesis testing

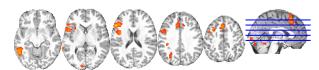
RFX and MFX

Detections in ASL

Methods Experiment Results


Conclusions

Within-subject analysis


Identify patterns of perfusion (or activation) in a single subject.

Examples

Cerebral blood flow.

Subject activation for a language task.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Between-group individual analysis

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

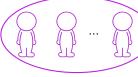
Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results


Conclusions

Between-group individual analysis

Identify deviation from normality in a single subject.

Camille Maumet

Detecting perfusion abnormalities

ASL

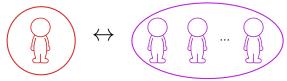
Group

Single-subject

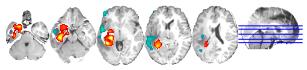
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment Results


Conclusions

Between-group individual analysis

Identify deviation from normality in a single subject.

Example

Hyper- and hypo-perfusions in a patient diagnosed with brain tumour.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods Experiment Results

Conclusions

Within-group and between-group analyses

Group analyses

- Study of typical brain perfusion.
- Provide a better understanding of brain dysfunction associated with a pathology.

Individual analyses

- Study of brain perfusion in a particular subject.
- Outline deviation from normality (or from a reference group).

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods

Experiment Results

Conclusions

Outline

etecting perfusion abnormalities Arterial Spin Labelling Group analysis Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model Hypothesis testing Random-effects and Mixed-effects

Detections in ASL
Methods
Experiment
Results

Camille Maumet

Detecting perfusion abnormalities

ASL

Group Single-subject

General Linear Model: MFX and

Model: MFX RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Camille Maumet

Detecting perfusion abnormalities

ASL

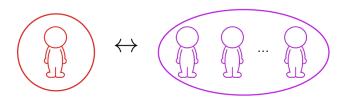
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

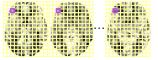
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

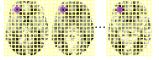
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

A massively univariate approach

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

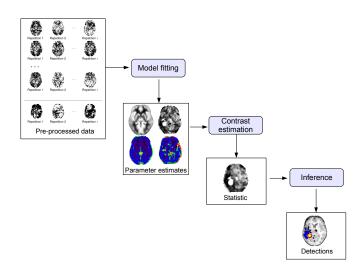
Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL


Methods

Experiment

Results

Conclusions

Hypothesis testing: overview

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

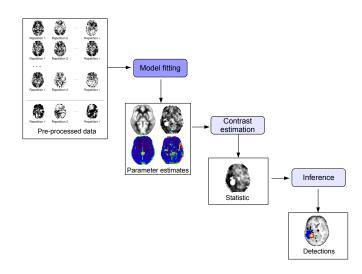
Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL


Methods

Experiment

Results

Conclusions

Hypothesis testing: overview

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

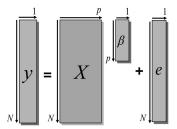
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Model fitting

Using the GLM, the dataset of interest is modelled as a linear combination of pre-defined parameters.

Source: "The General Linear Model for fMRI analyses" by FIL Methods Group, SPM Course, 2013.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

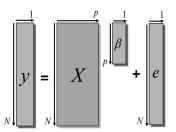
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Model fitting

Using the GLM, the dataset of interest is modelled as a linear combination of pre-defined parameters.

Source: "The General Linear Model for fMRI analyses" by FIL Methods Group, SPM Course, 2013.

Independent and identically distributed errors, i.e. given $e \sim \mathcal{N}(0, \sigma^2 I)$, we can use Ordinary Least Squares:

$$\hat{\boldsymbol{\beta}}_{oLS} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}, \ \widehat{\text{Var}}(\hat{\boldsymbol{\beta}}_{oLS}) = \hat{\sigma}^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}.$$
 (1)

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

Single-subject

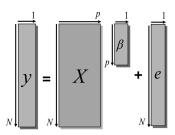
General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods


Experiment

Results

Conclusions

Model fitting

Using the GLM, the dataset of interest is modelled as a linear combination of pre-defined parameters.

Source: "The General Linear Model for fMRI analyses" by FIL Methods Group, SPM Course, 2013.

Independent and identically distributed errors, i.e. given $e \sim \mathcal{N}(0, \sigma^2 I)$, we can use Ordinary Least Squares:

$$\hat{\boldsymbol{\beta}}_{oLS} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}, \ \widehat{\text{Var}}(\hat{\boldsymbol{\beta}}_{oLS}) = \hat{\sigma}^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}.$$
 (1)

Otherwise, given $e \sim \mathcal{N}(0, V)$, Weigthed Least Squares:

$$\hat{\beta}_{WLS} = (X^T V^{-1} X)^{-1} X^T V^{-1} Y, \ \widehat{\text{Var}}(\hat{\beta}_{WLS}) = (X^T V^{-1} X)^{-1}.$$

2)

18/51

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Hypothesis testing: overview

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

REX and MEX

Detections in ASL Methods

Experiment Results

Conclusions

Hypothesis testing

Under the null hypothesis:

$$H_0: \boldsymbol{c}\boldsymbol{\beta}_{(\boldsymbol{v})} = 0.$$

Assuming the normality of the error, the t-statistic at voxel ν is defined by:

$$\frac{c\hat{\beta}_{(v)}}{\sqrt{\widehat{\operatorname{Var}}(c\hat{\beta}_{(v)})}} \sim \mathcal{T}_{N-p}.$$
 (3)

Camille Maumet

Detecting perfusion abnormalities

ASL

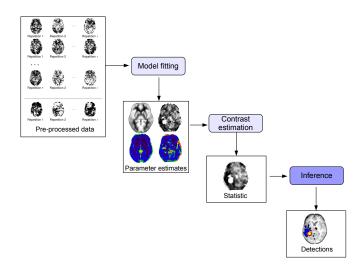
Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX


Detections in ASL Methods

Evporimo

Experiment Results

Conclusions

Hypothesis testing: overview

Camille Maumet

Detecting perfusion abnormalities ASI

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

REX and MEX

Detections in ASL

Methods

Experiment Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Modelling: subject level

Repetition 1

Repetition 2

•

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Modelling: subject level

Repetition 1

Repetition 2

estimate in subject 1: $\hat{\beta}_1$

Camille Maumet

Detecting perfusion abnormalities

ASL

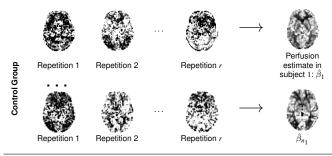
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment

Results

Conclusions

Modelling: subject level

Camille Maumet

Detecting perfusion

abnormalities

ASL Group

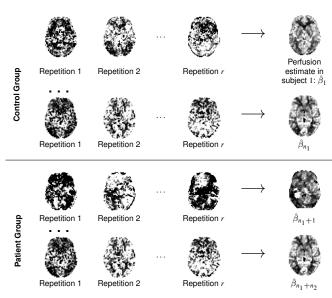
Single-subject

Olligie-Subjec

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods

Experiment Results

Conclusions

Modelling: subject level

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Modelling: group level

Patient Group

. . .

Repetition 1 Repetition 2

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

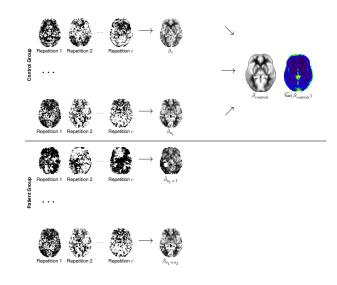
Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL


Methods

Experiment

Results

Conclusions

Modelling: group level

Camille Maumet

Detecting perfusion abnormalities

ASL

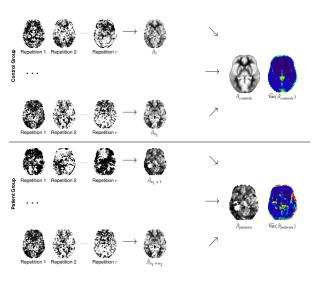
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods

Experiment

Results
Conclusions

Modelling: group level

Camille Maumet

Detecting perfusion abnormalities

ASL

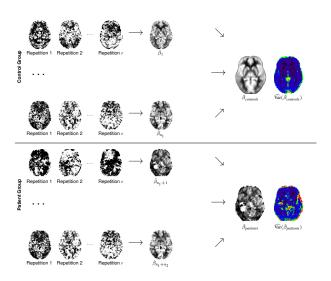
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment

Results

Conclusions

Modelling: group level

Random-effects (RFX) analysis.

Camille Maumet

Detecting perfusion abnormalities

ASL

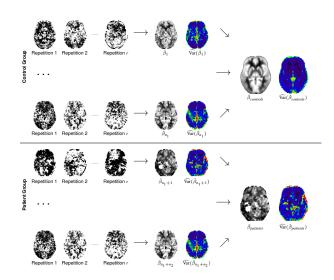
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment

Results

Conclusions

Modelling: group level

Mixed-effects (MFX) analysis.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Random-effects assumptions

RFX analyses assume that the **within-subject variance** is:

- negligible by comparison to the between-subject variance; or
- roughly constant across subjects.

Camille Maumet

Detecting perfusion abnormalities ASL Group Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

REX and MEX

Detections in ASL

Methods Experiment

Results

Random-effects or Mixed-effects analyses

In functional MRI there is no consensus:

- ► Superiority of MFX, [Beckmann 2003, Mumford 2006, Thirion 2007].
- ➤ Validity of RFX for one-sample t-tests in BOLD fMRI, [Mumford 2009].
- ► Invalidity of RFX [Chen 2012].

Both approaches are in use in the neuroimaging community:

- Random-effects analyses (SPM¹)
- ► Mixed-effects analyses (FSL², AFNI³).

What about ASL?

^{&#}x27;www.fil.ion.ucl.ac.uk/spm/

²fsl.fmrib.ox.ac.uk/fsl/fslwiki/

³afni.nimh.nih.gov/afni/

Camille Maumet

Detecting perfusion abnormalities

ASL

Group Single-subject

General Linear Model: MFX and

RFX Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Outline

etecting perfusion abnormalities
Arterial Spin Labelling
Group analysis
Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model
Hypothesis testing
Random-effects and Mixed-effects

Detections in ASL

Methods Experiment Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities ASI

Group Single-subject

General Linear

Model: MFX and RFX Hypothesis

testing BEX and MEX

REX and MEX

Detections in ASL Methods

Experiment Results

Conclusions

Outline

Detecting perfusion abnormalities
Arterial Spin Labelling
Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model
Hypothesis testing
Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Detecting perfusion abnormalities using the GLM

Between-group analyses

Individual analyses

- Modelling and estimation using the GLM.
- Difference between random-effects and mixed-effects analyses.

Note: For ease of calculation, the models will be presented in the following without covariates.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Detecting perfusion abnormalities using the GLM

Between-group analyses

Individual analyses

- Modelling and estimation using the GLM.
- Difference between random-effects and mixed-effects analyses.

Note: For ease of calculation, the models will be presented in the following without covariates.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

GLM: subject level

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

GLM: subject level

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

GLM: subject level

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject General Linear

Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

GLM: subject level

Given a voxel, for each subject *s* we have:

$$Y_s = X_s \, \beta_s + \epsilon_s, \tag{4}$$

- Y_s vector of observations;
- ► *X_s* subject-level design matrix;
- \triangleright β_s parameters to be estimated;
- $ightharpoonup \epsilon_s$ residual error

Camille Maumet

Detecting perfusion abnormalities

ASL

Group Single-subject

General Linear

Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods

Experiment Results

Conclusions

GLM: subject level

Given a voxel, for each subject *s* we have:

$$Y_s = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \beta_s + \epsilon_s. \tag{5}$$

- Y_s vector of observations;
- ► *X_s* subject-level design matrix;
- \triangleright β_s parameters to be estimated;
- ullet ϵ_s residual error, $\epsilon_s \sim \mathcal{N}(0, \sigma_s^2)$. [Aguirre 2002]

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

GLM: subject level

Assuming $\epsilon_s \sim \mathcal{N}(0, \sigma_s^2)$, by ordinary least squares we have:

$$\hat{\beta}_s = \frac{1}{r} \sum_{i=1}^r y_{s,i}$$
, and $\widehat{\operatorname{Var}}(\hat{\beta}_s) = \frac{\hat{\sigma}_s^2}{r}$

- \triangleright $y_{s,i}$ is the ith element of vector Y_s
- $\hat{\sigma}_s^2$ the estimated within-subjet variance.

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing BEX and MEX

REX and ME

Detections in ASL

Methods

Experiment Results

Conclusions

GLM: between-group

The subject parameters $(\beta_s)_{1 \le s \le n_1+1}$ can be combined using:

$$\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_{n_1+n_2} \end{bmatrix} = X_G \beta_G + \gamma_G, \tag{6}$$

- ➤ X_G is the group-level design matrix;
- \triangleright β_G the group parameters;
- $ightharpoonup \gamma_G^s$ the residual error term.

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

GLM: between-group

The subject parameters $(\beta_s)_{1 \leq s \leq n_1+1}$ can be combined using:

$$\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_{n_1} \\ \beta_{n_1+1} \\ \vdots \\ \beta_{n_1+n_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_{controls} \\ \beta_{patients} \end{bmatrix} + \gamma_G.$$
 (7)

where

• γ_G the residual error term, $\gamma_G^s \sim \mathcal{N}(0, \sigma_{G,i}^2)$.

Camille Maumet

Detecting perfusion

abnormalities ASI

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods

Experiment Results

Conclusions

GLM: between-group

The subject parameters $(\beta_s)_{1 \le s \le n_1+1}$ can be combined using:

$$\begin{bmatrix} \hat{\beta}_{1} \\ \vdots \\ \hat{\beta}_{n_{1}} \\ \hat{\beta}_{n_{1}+1} \\ \vdots \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_{controls} \\ \beta_{patients} \end{bmatrix} + \gamma_{G_{C}}.$$
 (8)

where

 $ightharpoonup \gamma_{G_C}$ the residual error term, $\gamma_{G_C}^s \sim \mathcal{N}\Big(0, \sigma_{G,i}^2 + \frac{\sigma_s^2}{r}\Big)$.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFY

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Contrast of interest

We are interested in the null hypothesis:

$$H0: \beta_{controls} = \beta_{patients}. \tag{9}$$

$$H0: c \,\beta_G = 0. \tag{10}$$

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods

Experiment Results

Conclusions

Contrast of interest

We are interested in the null hypothesis:

$$H0: \beta_{controls} = \beta_{patients}. \tag{9}$$

$$H0: c\,\beta_G = 0. \tag{10}$$

Corresponding to the patient versus control group contrast:

$$c = [1-1] \tag{11}$$

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing

Detections in ASL

Methods

Experiment Results

Conclusions

RFX and MFX

Random-effects (RFX) between-group analysis

Assuming $\gamma_{G_{C,i}}^s \sim \mathcal{N}(0, \sigma_{G_{C,i}}^2)$, by weighted least squares we have:

$$\hat{\beta}_{controls}^{RFX} = \frac{1}{n_1} \sum_{s=1}^{n_1} \hat{\beta}_s, \quad \hat{\beta}_{patients}^{RFX} = \frac{1}{n_2} \sum_{s=n_1+1}^{n_1+n_2} \hat{\beta}_s, \quad (12)$$

The associated sampling variances are:

$$\widehat{\text{Var}}(\hat{\beta}_{controls}^{RFX}) = \frac{\hat{\sigma}_{GC,1}^2}{n_1}, \quad \widehat{\text{Var}}(\hat{\beta}_{patients}^{RFX}) = \frac{\hat{\sigma}_{GC,2}^2}{n_2}$$
(13)

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

Single-subject

General Linear Model: MFX and **RFX**

Hypothesis testing **RFX** and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Mixed-effects (MFX) between-group analysis

Assuming $\gamma_{Gc,i}^s \sim \mathcal{N}(0, \sigma_{G,i}^2 + \frac{\sigma_s^2}{r})$, by weighted least squares we have:

$$\hat{\beta}_{controls}^{MFX} = \frac{1}{\sum_{j=1}^{n_1} w_{j,1}} \sum_{s=1}^{N_1} w_{s,1} \, \hat{\beta}_s, \quad \text{where } w_{s,i} = \frac{1}{\hat{\sigma}_{G,i}^2 + \frac{\hat{\sigma}_s^2}{r}}$$

 $\hat{\beta}_{patients}^{\text{MFX}} = \frac{1}{\sum_{j=n_1+1}^{n_1+n_2} w_{j,2}} \sum_{s=n,\, \perp\, 1}^{n_1+n_2} w_{s,2}\,\hat{\beta}_s.$

(14)

The associated sampling variances are:

$$\widehat{\text{Var}}(\hat{\beta}_{controls}^{MFX}) = \frac{1}{\sum_{s=1}^{n_1} w_{s,1}}, \quad \widehat{\text{Var}}(\hat{\beta}_{patients}^{MFX}) = \frac{1}{\sum_{s=n_1+1}^{n_1+n_2} w_{s,2}}$$
(15)

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Detecting perfusion abnormalities using the GLM

Between-group analyses

Individual analyses

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Random-effects (RFX) analysis

Assuming $\gamma_{G_C}^s \sim \mathcal{N}(0, \sigma_{G_C}^2)$, by ordinary least squares we have:

$$\hat{\beta}_{controls}^{RFX} = \frac{1}{n_1} \sum_{s=1}^{n_1} \hat{\beta}_s, \quad \hat{\beta}_{patient}^{RFX} = \hat{\beta}_{n_1+1}, \tag{16}$$

The associated sampling variances are:

$$\widehat{\operatorname{Var}}(\hat{\beta}_{controls}^{RFX}) = \frac{\hat{\sigma}_{G_C}^2}{n_1}, \quad \widehat{\operatorname{Var}}(\hat{\beta}_{patient}^{RFX}) = \hat{\sigma}_{G_C}^2$$
 (17)

Camille Maumet

Detecting perfusion

abnormalities

ASL Group

Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Mixed-effects (MFX) analysis

Assuming $\gamma_{G_C}^s \sim \mathcal{N}(0, \sigma_G^2 + \frac{\sigma_s^2}{r})$, by weighted least squares we get:

$$\hat{\beta}_{controls}^{MFX} = \frac{1}{\sum_{j=1}^{n_1} w_{j,1}} \sum_{s=1}^{n_1} w_{s,1} \, \hat{\beta}_s, \quad \hat{\beta}_{patient}^{MFX} = \hat{\beta}_{n_1+1}$$
where $w_s = \frac{1}{\hat{\sigma}_G^2 + \frac{\hat{\sigma}_s^2}{r}}.$ (18)

The associated sampling variances are:

$$\widehat{\text{Var}}(\hat{\beta}_{controls}^{MFX}) = \frac{1}{\sum_{s=1}^{n_1} w_s}, \quad \widehat{\text{Var}}(\hat{\beta}_{patients}^{MFX}) = \hat{\sigma}_G^2 + \frac{\sigma_{n_1+1}^2}{r}$$
(19)

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusions

Random-effects and Mixed-effects analyses

Control group and patient estimates and sampling variances with RFX and MFX.

	$\hat{eta}_{controls}$	$\hat{eta}_{patient}$	$\widehat{Var}(\hat{eta}_{controls})$	$\widehat{Var}(\hat{eta}_{patient})$
RFX	$\frac{1}{n_1} \sum_{s=1}^{n_1} \hat{\beta}_s$	$\hat{\beta}_{n_1+1}$	$\frac{\hat{\sigma}_{G_C}^2}{n_1}$	$\hat{\sigma}^2_{G_C}$
MFX	$\frac{1}{\sum_{j=1}^{n_1} \frac{1}{\sigma_G^2 + \frac{\hat{\sigma}_j^2}{r}}} \sum_{s=1}^{n_1} \frac{1}{\hat{\sigma}_G^2 + \frac{\hat{\sigma}_s^2}{r}} \hat{\beta}_s$	$\hat{\beta}_{n_1+1}$	$\frac{1}{\sum_{s=1}^{n_1} \frac{1}{\hat{\sigma}_G^2 + \frac{\hat{\sigma}_s^2}{r}}}$	$\hat{\sigma}_G^2 + \frac{\hat{\sigma}_{n_1+1}^2}{r}$

Camille Maumet

Detecting perfusion abnormalities

ASL

Group Single-subject

General Linear

Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL Methods

Experiment

Results

Conclusions

Subjects and imaging protocol

25 patients diagnosed with brain tumours and 61 control subjects participated in this study.

Imaging protocol:

- ▶ PICORE Q2TIPS Pulsed ASL, 60 repetitions
 - MPRAGE T1 3D
 - ► T2 FLAIR

For the patients only:

- ► T1 3D Gadolinium
- Dynamic Susceptibility Contrast imaging (DSC)

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and

RFX
Hypothesis

testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Validation: Ground Truth

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Validation: Ground Truth

1. Segmentation of the tumour:

T1 Gadolinium

oedema segmentation

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

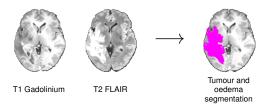
General Linear Model: MFX and RFX

Hypothesis testing

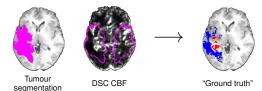
RFX and MFX

Detections in ASL

Methods


Experiment

Results


Conclusions

Validation: Ground Truth

1. Segmentation of the tumour:

2. Combination with T2 perfusion information:

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

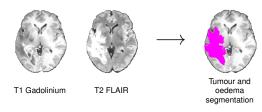
Single-subject

General Linear Model: MFX and RFX

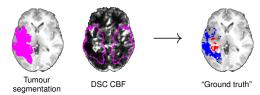
Hypothesis testing RFX and MFX

Detections in ASL

Methods


Experiment

Results


Conclusions

Validation: Ground Truth

1. Segmentation of the tumour:

2. Combination with T2 perfusion information:

3. Visual assessment and manual corrections by a clinician.

Camille Maumet

Detecting perfusion abnormalities ASI

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Model

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Assumptions of RFX analyses

Assumption 1: Within-subject variance negligible by comparison to the between-subject variance.

Camille Maumet

Detecting perfusion abnormalities

ASI

Group

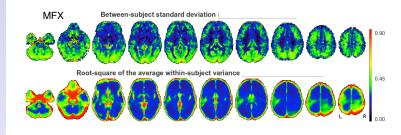
Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL


Methods

Experiment Results

Conclusions

Assumptions of RFX analyses

Assumption 1: Within-subject variance negligible by comparison to the between-subject variance.

Camille Maumet

Detecting perfusion abnormalities

ASI

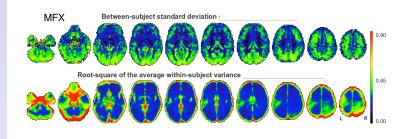
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment

Results
Conclusions

Assumptions of RFX analyses

Assumption 1: Within-subject variance negligible by comparison to the between-subject variance.

× not verified

Camille Maumet

Detecting perfusion abnormalities

ASL

Group Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing **RFX** and MFX

Detections in ASL

Methods Experiment

Results

Conclusions

Assumptions of RFX analyses

Assumption 2: Within-subject variance roughly constant across subjects.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

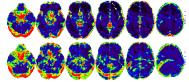
General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX

Detections in ASL

Methods


Experiment Results

Conclusions

Assumptions of RFX analyses

Assumption 2: Within-subject variance roughly constant across subjects.

Within-subject standard deviation in two control subjects:

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

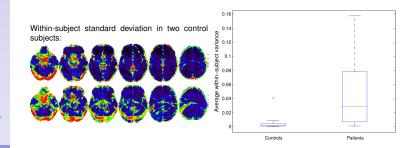
Single-subject

General Linear Model: MFX and

RFX
Hypothesis

testing BEX and MEX

Detections in ASL


Methods

Experiment Results

Conclusions

Assumptions of RFX analyses

Assumption 2: Within-subject variance roughly constant across subjects.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

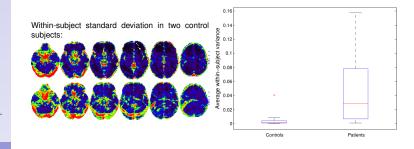
General Linear Model: MFX and

RFX Hypothesis

testing

RFX and MFX

Detections in ASL


Methods Experiment

Results

Conclusions

Assumptions of RFX analyses

Assumption 2: Within-subject variance roughly constant across subjects.

× not verified

Camille Maumet

Detecting perfusion abnormalities

ASL

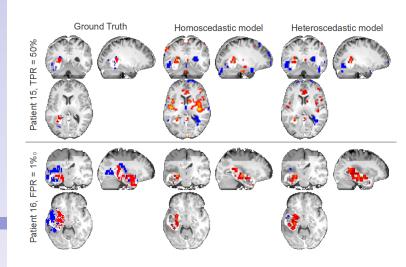
Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX


Detections in ASL

Methods Experiment

Results

Conclusions

Results: RFX versus MFX

Camille Maumet

Detecting perfusion abnormalities

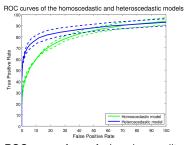
ASL

Group Single-subject

General Linear Model: MFX and

RFX Hypothesis

testing RFX and MFX


Detections in ASL

Methods Experiment

Results

Conclusions

Results: RFX versus MFX

ROC curves for perfusion abnormality detections. [Maumet et al., Neurolmage 2013]

	Random-effects analysis					
FWHM (mm ³)	0	4	6	8	10	
ROC Area	0.46	0.49	0.49	0.49	0.48	

Mixed-effects analysis								
FWHM (mm ³)	0	4	6	8	10			
ROC Area	0.63	0.70	0.72	0.72	0.69			
Area under the ROC curve.								

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject
General Linear

Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment Results

Conclusion

Outline

Detecting perfusion abnormalities

Arterial Spin Labelling

Group analysis

Single-subject analysis

Random-Effects and Mixed-Effects General Linear Mode

Hypothesis testing

Random-effects and Mixed-effects

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Detecting perfusion abnormalities ASI

Group Single-subject

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL

Methods Experiment Results

Conclusions

Conclusion

- the assumptions of RFX analyses were violated.
- using an MFX analysis was essential in the detection of perfusion abnormalities at the patient level.

Camille Maumet

Detecting perfusion abnormalities ASL Group

Single-subject
General Linear
Model: MFX and
REX

Hypothesis testing RFX and MFX

Detections in ASL

Methods Experiment Results

Conclusion

Conclusion

- ▶ the assumptions of RFX analyses were violated.
- using an MFX analysis was essential in the detection of perfusion abnormalities at the patient level.
- According to the literature, the difference between RFX and MFX is less pronounced when comparing 2 groups.

Camille Maumet

perfusion abnormalities ASL Group Single-subject

Detecting

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL Methods Experiment Results

Conclusion

Conclusion

- the assumptions of RFX analyses were violated.
- using an MFX analysis was essential in the detection of perfusion abnormalities at the patient level.
- According to the literature, the difference between RFX and MFX is less pronounced when comparing 2 groups.
- Further investigation using other ASL sequences are needed.

Camille Maumet

perfusion abnormalities ASL Group Single-subject

Detecting

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL Methods Experiment Results

Conclusion

Conclusion

- ▶ the assumptions of RFX analyses were violated.
- using an MFX analysis was essential in the detection of perfusion abnormalities at the patient level.
- According to the literature, the difference between RFX and MFX is less pronounced when comparing 2 groups.
- Further investigation using other ASL sequences are needed.
- Software packages: RFX (SPM), MFX (FSL, AFNI).

Camille Maumet

Detecting perfusion abnormalities ASL Group Single-subject

General Linear Model: MFX and RFX

Hypothesis testing RFX and MFX

Detections in ASL Methods Experiment

Results

Conclusion

- the assumptions of RFX analyses were violated.
- using an MFX analysis was essential in the detection of perfusion abnormalities at the patient level.
- According to the literature, the difference between RFX and MFX is less pronounced when comparing 2 groups.
- Further investigation using other ASL sequences are needed.
- Software packages: RFX (SPM), MFX (FSL, AFNI).
- ► More details on RFX and MFX [Beckmann 2003, Mumford 2006, Mumford 2009].

Camille Maumet

Detecting perfusion abnormalities

ASL Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing BEX and MEX

Detections in ASL

Methods Experiment Results

Conclusion

Thank you

VisAGeS team:

- Christian Barillot.
- Pierre Maurel.
- Jean-Christophe Ferré.
- Béatrice Carsin.

C. Maumet, P. Maurel, J-C. Ferré, B. Carsin, C. Barillot. *Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling.* NeuroImage, 2013, 81C, pp. 121-130. Freely available online.

Camille Maumet

Detecting perfusion abnormalities

ASL

Group

Single-subject

General Linear Model: MFX and RFX

Hypothesis testing

RFX and MFX

Detections in ASL

Methods

Experiment

Results

Conclusions

Camille Maumet

Appendix

Outline

Appendix

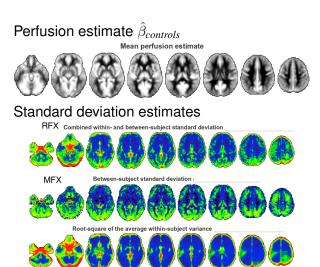
Camille Maumet

Appendix

A model of normal perfusion

Perfusion estimate $\hat{\beta}_{controls}$

Mean perfusion estimate

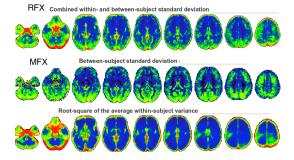


Camille Maumet

Appendix

A model of normal perfusion

Camille Maumet


Appendix

A model of normal perfusion

Perfusion estimate $\hat{\beta}_{controls}$

Standard deviation estimates

Brain arteries

Brain veins