

A Comprehensive Framework for the Detection of Individual Brain Perfusion Abnormalities Using Arterial Spin Labeling

<u>Camille Maumet^{1,2,3}</u>, Pierre Maurel^{1,2,3}, Jean-Christophe Ferré^{1,2,3,4}, Christian Barillot^{1,2,3}

INRIA, VisAGeS Project-Team, F-35042 Rennes, France
INSERM, U746, F-35042 Rennes, France
University of Rennes I, CNRS, UMR 6074, IRISA, F-35042 Rennes, France
CHU Rennes, Department of Neuroradiology, F-35033 Rennes, France

Purpose

Context: Arterial Spin Labeling (ASL) enables measuring cerebral blood flow (CBF) in MRI without injection of a contrast agent.

Method

ASL Template, a model of normal perfusion:

 $Perf \sim N(\mu_{pop}, \sigma_{pop}^2 + \sigma_{sub,tpl}^2)$

Problem: In ASL, perfusion abnormality studies usually rely on manual regions of interest delineations, a time-consuming task prone to inter-expert variability.

Our approach: We propose an automatic framework to identify hypoperfused and hyperperfused regions in individual patients by comparison to a model of normal perfusion. This model takes into account the first level variance in order to model the subject-specific spatial noise distribution. inter-subject variance intra-subject variance

Comparison of a new subject:

$$\hat{\beta} = perf_{N+1} - \hat{\mu}_{pop}, \quad \operatorname{Var}(\hat{\beta}) = \frac{\sigma_{pop}^2 + \sigma_{sub,tpl}^2}{N} + \sigma_{pop}^2 + \sigma_{sub,N+1}^2$$

A contrario approach: from voxel-based to region-based probabilities:

Results

Data: 12 patients diagnosed with brain tumors and 35 healthy subjects were involved in this study.

Detection of patient-specific perfusion abnormalities:

Quantitative comparison:

	GLM $w = 2 \ w = 4 \ w = 6 \ w = 8 \ w = 10$				$a\ contrario$
					$r = 1 \ r = 2$
pseudo-sensitivity	0.29 0.31	0.32	0.33	0.34	0.37 0.53

pseudo-specificity 0.98 0.97 0.96 **0.95** 0.94 0.96 **0.89**

Conclusion

We have presented a comprehensive framework for the detection of brain perfusion abnormalities in individual patients by comparison to a template of healthy subjects. We applied this model to 12 patients suffering from brain tumors and compared our *a contrario* approach to the classical GLM with FDR correction. This analysis pointed out the benefits of the *a contrario* approach: a better conservation of the hypo- and hyper-perfusions boundaries and a greater sensitivity. This increase in sensitivity might be crucial in the study of pathologies presenting more subtle patterns of abnormal perfusion.

The 15th International Conference on Medical Image Computing and Computer Assisted Intervention

